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A comparison of several commonly used turbulence models (including the K--E model 
and three second-order closures) is made for the test problem of homogeneous 
turbulent shear flow in a rotating frame. The time evolution of the turbulent kinetic 
energy and dissipation rate is calculated for these models and comparisons are made 
with previously published experiments and numerical simulations. Particular 
emphasis is placed on examining the ability of each model to predict equilibrium 
states accurately for a range of the parameter sZ/S (the ratio of the rotation rate to 
the shear rate). It is found that none of the commonly used second-order closure 
models yield substantially improved predictions for the time evolution of the 
turbulent kinetic energy and dissipation rate over the somewhat defective results 
obtained from the simpler K--E model for the unstable flow regime. There is also a 
problem with the equilibrium states predicted by the various models. For example, 
the K--E model erroneously yields equilibrium states that are independent of !2/S 
while the Launder, Reece & Rodi model and the Shih-Lumley model predict a flow 
relaminarization when Q/S > 0.39 - a result that is contrary to numerical simu- 
lations and linear spectral analyses, which indicate flow instability for a t  least the 
range 0 < sZ/S < 0.5. The physical implications of the results obtained from the 
various turbulence models considered herein are discussed in detail along with 
proposals to remedy the deficiencies based on a dynamical systems approach. 

1. Introduction 
Homogeneous turbulent flows have played a central role in the calibration and 

testing of a variety of turbulence models. The reason for this prominence is twofold : 
(a )  homogeneous turbulence contains many of the important flow effects of scientific 
and engineering interest in a simplified setting which quite often gives rise to closed- 
form solutions in the commonly used turbulence models, and (b )  there is an 
abundance of reliable data from physical and numerical experiments with which to 
compare the predictions of turbulence models. I n  particular, the physical and 
numerical experiments on homogeneous plane shear and plane strain (see Tucker & 
Reynolds 1968; Champagne, Harris & Corrsin 1970; Tavoularis & Corrsin 1981; 
Rogallo 1981) have been used extensively in the calibration of second-order closure 
models and the most recent two-equation models of the K-s type. When a two- 

t Present address : Mathematics Department, Case Western Reserve University, Cleveland, 
OH 44106, USA. 
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Z 

FIGURE 1. Homogeneous turbulent shear flow in a rotating frame. 

equation turbulence model or a second-order closure model is applied to homogeneous 
turbulence, it gives rise to an initial-value problem for a set of coupled nonlinear 
ordinary differential equations - a dynamical systems problem. However, there 
appear to have been no previously published studies of homogeneous turbulence 
modelling from this nonlinear dynamics standpoint. This forms the motivation for 
the present study. 

In this paper the performance of five commonly used turbulence models (the 
standard K--E model, a nonlinear K-s model, the Launder, Reece & Rodi second-order 
closure model, the Rotta-Kolmogorov second-order closure model and the 
Shih-Lumley second-order closure model) are examined for the test problem of 
homogeneous turbulent shear flow in a rotating frame. This problem constitutes a 
significant test since it encompasses arbitrary combinations of plane shear and plane 
rotation which can have either a stabilizing or destabilizing effect. The time 
evolution of the turbulent kinetic energy and dissipation rate will be computed along 
with equilibrium states which, mathematically, are the fixed points of the resulting 
system of nonlinear ordinary differential equations. Extensive comparisons with 
physical and numerical experiments will be made. The results obtained are somewhat 
disappointing, a t  least in a quantitative sense. For example, it will be shown that the 
commonly used two-equation models of the K-e type yield predictions for the 
turbulent kinetic energy and dissipation rate that are independent of the state of 
rotation of the fluid - a  result that is in substantial contradiction to numerical 
simulations of the Navier-Stokes equations. While the second-order closure models 
do yield rotationally dependent solutions, i t  will be shown that their predictions of 
the time evolution of the turbulent kinetic energy and dissipation rate are not (for 
the unstable flow regime where the kinetic energy and dissipation rate grow 
exponentially with time) substantially better than the simpler K-e model. 
Considerable attention will be paid to the ability of each model to predict equilibrium 
states. In  this regard, it will be shown that there are deficiencies in the commonly 
used second-order closures. For example, the Launder, R,eece & Rodi model and 
the Shih-Lumley model will be shown to predict a flow relaminarization when 
521s > 0.39 whereas large-eddy simulations and linear spectral analyses indicate that 
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there is an exponential growth in the turbulent kinetic energy and dissipation rate 
for 0 < 01s < 0.5 (it is only their ratio, the turbulent timescale, that approaches a 
structural equilibrium). On the other hand, the K-s model erroneously predicts 
unstable flow for all values of Q/S with exactly the same turbulence structure. The 
results predicted by these five turbulence models will be documented in detail and 
specific proposals will be made for the development of improved models. 

2. Turbulent shear flow in a rotating frame 
We shall consider the problem of homogeneous turbulent shear flow in a steadily 

rotating frame for an incompressible viscous fluid (see figure 1). This problem is 
chosen because it incorporates arbitrary combinations of plane rotations and shear 
and, hence, represents a rather general class of homogeneous turbulent flows in a 
simplified setting. Since the homogeneous turbulence problem being considered is 
planar, the Reynolds equation is satisfied identically for all values of the rotation 
rate Q and shear rate S (cf. Reynolds 1987). Consequently, no consistency problems 
can arise since the mean momentum and continuity equations are satisfied identically 
for the entire range of parameter space. For the problem a t  hand, the mean velocity 
gradient tensor in the rotating frame is given by 

and 0, = (0,0,0) denotes the rotation rate of the framing relative to an inertial 
frame of reference. We shall restrict our attention to incompressible fluids, with 
constant properties, for which the turbulence is initially isotropic. 

First, we shall consider the traditional K-E model for which the turbulent kinetic 
energy K and dissipation rate E are solutions of the nonlinear ordinary differential 
equations (see Hanjalic & Launder 1972) 

for any homogeneous turbulent flow. Here, rii is the Reynolds stress tensor (such 
that K = -$rii) which is represented by the eddy viscosity model 

where C,,, C,, and C,, are constants, which are usually taken to assume the values of 
0.09, 1.45 and 1.90, respectively. For turbulent-shear flow in a rotating frame, (2) and 
(3) simplify to 

K2 
K = Cp-S2-€, E (5) 

€2 t. = C,, C, KS2 - C,, - 
K’ 
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and the components of the anisotropy tensor aij = - (ri j  +iK8,)/K are as follows : 

a,, = 0, aI2 = -C,SK/E, = 0, (7) 

aZ2 = 0, aZ3 = 0, a33 = 0. (8) 

Equations (5) and (6) can be combined to yield a nonlinear differential equation for 
EISK of the form 

(9) 

where t* = St is the dimensionless time. The time evolution of the anisotropy tensor 
can be obtained from (7)-(9) which are solved subject to  the initial condition 

e €0 =- 
SK, 

a t  time t* = O .  Then, the turbulent kinetic energy can be obtained from (5) 
integrated in the form 

- dK* = (CpT-srr)K*, SK E 

dt* 

which constitutes a linear differential equation for K* = K / K ,  once e/SK is 
determined from (9). Here, c* = e/e, can be easily obtained once K* and e/SK are 
known since 

E* = K* r?) (&). 
It therefore follows that the evolution of K * ,  E* and SK/e in dimensionless time t* 
only depends on the shear rate and initial conditions through the dimensionless 
parameter SK,/e,. Consequently, the K--6 model predicts that two homogeneous 
turbulent shear flows are dynamically similar provided that SK,/e, is the same for 
both flows. This is only partially consistent with the Navier-Stokes equations which 
at  least require that both SK,/e, and the shape of the initial energy spectrum be the 
same for two flows to be dynamically similar. The equations of motion for the K-E 
model in homogeneous turbulent shear flow are the same in all frames of reference 
independent of whether or not they are inertial and, therefore, the time evolution of 
K*, e* and SKI€ are independent of the rotation rate SZ of the reference frame. This 
result will be shown later to be in serious disagreement with numerical simulations 
of the Navier-Stokes equations. 

Equation (9) has an equilibrium solution (in the limit as t* + co) which is of the 
form 

where a = (C,,- l) /(Cel- 1). Hence, the long-time solutions (i.e. when t* 9 1) for K* 
and E* behave as 

K* - exp [(:r (a  - 1 )  t* ]  , (14) 

which are obtained by substituting (13) into (11) and (12). Thus the K--E model 
predicts that there is an exponential growth of K and E in time for homogeneous 
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turbulent shear flow; a structural equilibrium is reached in terms of the dimensionless 
ratio SKIe that is completely independent of initial conditions. It is encouraging to 
note that this physical picture is consistent with direct numerical simulations of the 
Navier-Stokes equations (see Rogallo 1981) and physical experiments (see Tavoularis 
& Corrsin 1981) for turbulent shear flow in an inertial framing. However, as we shall 
soon see, it is qualitatively incorrect for a wide range of rotation rates that lie outside 
the range 0 < sZ/S < 0.5. 

Speziale (1987) recently proposed a nonlinear K-e model which, for turbulent 
channel and duct flows, was shown to yield improved predictions for the normal 
Reynolds stress anisotropies. The Reynolds stress tensor for this nonlinear K-E model 
generalized for rotating flows is as follows (see Speziale 1989) : 

K 2  - K 3  L 
rii = -z&cY*i + 2Cp-S, -4c; c - (S, +sik-L!7kj gmm 8, -k 2w,, Skj 4- 2iqkSki), e €2 

where 

are, respectively, the frame-indifferent Jaumann derivative of S the mean rate of 
strain tensor S the mean vorticity tensor a, and the intrinsic mean vorticity tensor 
W (i.e. the mean vorticity tensor relative to an inertial framing). It is clear that the 
traditional K-e model is extracted in the limit as CD -+ 0 (C, was evaluated to  be 1.68 
by correlating with experimental data for turbulent channel flow; see Speziale 1987). 
Equation (16) must be solved in conjunction with modelled transport equations for 
the turbulent kinetic energy and dissipation rate. The same transport equations for 
K and E as developed for the traditional K-e model (see (2) and (3)) have been used. 
Consequently, for homogeneous turbulent shear flow in a rotating frame, it can be 

SK 
an=-cp,9 

shown that 
a,,=C D C2 - --8 ( 9 1 7  - 

for the nonlinear K-E model. Since aI2 is of the same form for both the nonlinear and 
linear K-e model, it follows that the transport equations for K and e corresponding 
to (20) and (21) are the same as their linear counterparts. More specifically, (20) and 
(21) are solved along with the transport equations (5) and (6) which yield the same 
results for K and E as obtained from the traditional K-e model (most notably, this 
means that the equilibrium value of (SK/e), is the same as given in (13) for the 
traditional K-e model). Hence, the nonlinear K-e model of Speziale (1987, 1989) only 
gives rise to differences in the normal components of the anisotropy tensor. Later, it 
will be shown how these differences constitute a substantial improvement over the 
traditional K-e model. 

Perhaps the most popular second-order closure model currently used is that of 
Launder, Reece &, Rodi (1975). I n  the simplified form of this model? (which will 

t This simplified form of the LRR model is now referred to as the Basic Model by Launder and 
his coworkers. 
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hereinafter be referred to as the LRR model), the Reynolds stress tensor is a solution 
of the transport equation 

which has been simplified to a form valid for any rotating homogeneous turbulence. 
In (22),  C, and C, are empirical constants usually taken to be 1.8 and 0.6, 
respectively. This Reynolds stress transport model is solved in conjunction with the 
modelled dissipation rate equation (3) where C,, = 1.45 and C,, = 1.90. For the 
problem of homogeneous turbulent shear flow in a rotating frame, the LRR model 
yields the following system of coupled nonlinear ordinary differential equations : 

K = T , ~ S - E ,  (23) 

Since 733 = - ( 7 1 1  + T~~ + 2K) (28) 

it is not necessary to solve the transport equation for 733. The system of equations 
(23)-(27) can be non-dimensionalized and recast into an alternative system of 
equations for sISK, a,,, a12, a22 and K*, which are as follows: 

dK* 
- dt* = -(aI2+&)K*, 

-- dalz - ( C , - l ) ( a , , + $ ) + ( C 2 - 2 )  a,,+a;,, (31) 
dt* 

(32) 

(33) 

where again t* = St is the dimensionless time. These nonlinear ordinary differential 
equations are solved subject to the initial conditions 

a,, = 0, a,, = 0, aZ2 = 0 (34) 
6 €0 

*rK=SK,> 
at time t* = 0, which correspond to a state of isotropy (the same conditions that are 
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usually taken in physical and numerical experiments). It should be noted that a33 
and E* can be obtained from the computed variables as follows: 

a33 = - (a11 +a,,). (36) 

It is also interesting to  note that the shear rate only enters into the solution of the 
problem through the initial condition SK,/s,. Hence, there cqn be equilibrium 
solutions that only depend on a single parameter -the ratio of the rotation rate to 
the shear rate a / S .  Such equilibrium states are of the form 

in the limit as t* + co. In  dynamical systems terms, (37) constitute the fixed points 
in the four-dimensional phase space (s /SK,  a,,, a,,, azz) of equations (29), (31), (32) 
and (33). Mathematically, these fixed points are determined by setting the time 
derivatives of e/SK, a,,, a12 and a,, to zero. This yields the nonlinear system of 
algebraic equations 

(39) 
6 

(C, - 1) (a,, +$) + (C, -2) - (C, - 1 )  -a1, + a;, = 0, SK 

2 (2-C2)-+-(C2-1) a,,+(l-C1) - a,,+a,,a,, = 0, [ O 2  S 3  1 (a 
2 (C2-2)---(C2-l) a,,+(l-C,) - a,,+a,,a,, = 0, (41) [ a 1  8 3  1 ( i K )  

whose solutions will be examined in the next section. 
The Rotta-Kolmogorov model (cf. Mellor & Herring 1973) will now be considered. 

Since this model has been applied to a variety of geophysical fluid dynamics 
problems involving system rotations (cf. Mellor & Yamada 1974), its performance in 
predicting homogeneous turbulent shear flow in a rotating frame is of interest. For 
a general homogeneous turbulence in a rotating frame, the Rotta-Kolnlogorov 
model (which will hereinafter be referred to as the RK model) takes the form 

(avi au) 41/2K; 
(7ij+5KSij)-2c,K -+A axi axi +-- 3 B,I Si*> (42) 

1 / 2  Ki 
3A, 1 

where 1 is the lengthscale of turbulence, and A,, B,, C ,  and E are empirical constants 
which are taken to be 0.78, 15.0, 0.056 and 1.4, respectively. For homogeneous 
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turbulent shear flow in a rotating frame, (42) and (43) yield the following system of 
nonlinear ordinary differential equations 1 

2 4 2 &  
K = T~,S--- 

B, 1 ' (44) 

4 4 2 &  4 2  Ki 
3A1 1 3B1 I ' 

(Tll -I-'&) - 27,,(S- 252) + -- ill = 

f,, = 
3A1 1 

(47) 

However, the decay of turbulent kinetic energy is governed by the equation 

K = 712 S -  e, (49) 

which is a rigorous consequence of the Navier-Stokes equations for the homogeneous 
turbulent shear flow under consideration. A simple comparison of (44) and (49) yields 

for the RK model. Hence, as with the LRR model, the system of equations (44)-(48) 
can be non-dimensionalized and recast into an equivalent set of equations for SKI€ ,  

& 2  

Jz 
-- dun - 2(C,-5)-u2,+ 1 - 2  -al , -2-((a, , -a22)+a~,> 
dt* ( :,)ASK S 

-- 
dt* 

J z 1  
-- -2  2--- a,,+ 1 - 2  -a,,+a,,a,,. 
dazz- dt* ( S 3) ( L , ) i K  

(53) 

(54) 

This system of nonlinear ordinary differential equations is solved subject to the 
initial conditions (34) which correspond to an isotropic turbulence. As with the LRR 
model, K*, e* and a33 are obtained from the computed variables using (30), (35) and 
(36) which are model independent. The equilibrium states corresponding to the RK 
model are obtained by setting the time derivatives to zero in (51)-(54) which yields 
the nonlinear algebraic equations 

e (@ - 3 a)@a,,-(&)l = 07 

( :&K s 
Jz 

2(C1-~)-a, ,+ 1 - 1  -a,,-2-((all-a,,)+a;, = 0, 

(55) 
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5 2 1  
4 --- a,,+ 1 - 1  -a,,+a,,a,, = o ,  (s 3 )  ( L&K 

5 2 1  
-2  2--- a,,+ 1 - 2  -a,,+a,,a,, = 0. ( X  3)  ( &,)L5K 

(57) 

The equations of motion for the R K  model are of the same general form as those for 
the LRR model (only the values of the coefficients are altered). Hence, both second- 
order closure models have the same topological properties. For example, both models 
have exponential long-time growth behaviour, i.e. 

for t* 9 1 and (EISK), > 0.t (it should be noted that Tavoularis (1985) predicted such 
an exponential growth for the spatially evolving version of homogeneous turbulent 
shear flow obtained by a Galilean transformation). Furthermore, the bifurcation 
diagrams for these models are qualitatively similar. 

Finally, we shall consider the Shih-Lumley model (Shih & Lumley 1985; and 
T. H .  Shih 1988, private communication) which constitutes one of the newer second- 
order closure models that has received considerable attention during the past few 
years. This model (hereinafter referred to as the SL model) is noteworthy for its 
satisfaction of realizability (Lumley 1978) and for its more elaborate treatment of the 
pressurestrain correlation. For any homogeneous turbulence in a rotating frame, 
the SL model takes the form 

+ P 4 5  + $4,, 
where 

a =--( :o 1+0.8Fi), F = 1+27III+9II, 

II = -ibij b,, III = $bij bjk bki, bi5 = $ii, (63) 

p = 2 +1${80.1 In [ 1 + 62.4( - 11+ 2.3III)I). (64) 

t For ( c / S K ) ,  = 0, it will be demonstrated later that  K and 8 can either grow or decay with time. 
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is obtained from a modelled transport equation of the form 

where C,*, = 1.44, C,*, =~+0.49[1-0.331n(l-551~)] (66) 

for high-Reynolds-number flows. The SL model equations for homogeneous shear 
flow in a rotating frame are obtained by substituting (1) and (18) into (61) and (65) 
while making use of the fact that 52, = (0, 0, a). These equations take the form 

K = ~ ~ ~ s - 8 ,  (67 1 
6 €2 

K K '  
6 = c$-712s-cE*2- 

ill = -2(S-252)~12+~~bll+~~+(~+~~5)($S-2252)~12 

2 
5K +$(I  -a,)712S-gbl1712s-~(s-2Q)712--[(S--) (711712+712722) 

-711 7 1 2  81, (69) 
i,, = -2&,,- ( S - 2 5 2 ) 7 2 2 + P ~ b 1 2 - 2 ( ~ + 2 a 5 ) K S  

- (2 + %%) [711s- (711-722)  521 + $(I-%) (711 +722)s 

-!bl2 71, S+ $(S- 2Q) (711 - 722)  -- [7:2(S- a)  + T;,  (70) 
1 

5K - 711 722 S ] ,  

i,, = - 4527,, + P€bZ2 + @ - (2 + *,) ($8 - 2Q) 712 

2 
5K -f(i+ ?a5) 712 X- $bZ2 712 S+ &(S- 252) 712 - - [ a 7 , ,  712 - (S-  Q) 712 T ~ , ] .  (71) 

We shall not bother to convert the system (67)-(71) into the variables (b , , ,  b,,, b,,, 
e/SK) since, owing to the highly nonlinear nature of these equations, a closed-form 
analysis of its equilibrium states is not possible. The equilibrium states of the SL 
model will be obtained solely from a numerical integration of (67)-(71). A comparison 
of the results predicted by each of the models with physical and numerical 
experiments will be made in the next section. 

3. Comparison of the models 
First, we shall present computed results for the time evolution of the turbulent 

kinetic energy and dissipation rate predicted by the various models. It should be 
noted that both the traditional and nonlinear K-c models yield the same results for 
the time evolution of K* and c* (the differences between the two models are in their 
predictions for the anisotropy tensor). Computations were conducted for a variety of 
values of Q/S using a Runge-Kutta-Fehlburg numerical integration scheme. In 
figures 2 and 3, the time evolution of the turbulent kinetic energy and dissipation 
rate are shown for Q/8 = 0 and an initial condition of Eo/SKo = 0.296 (picked to 
agree with the large-eddy simulations of Bardina, Ferziger & Reynolds 1983). All of 
the models except the SL model are in the range of the results obtained from the 
large-eddy simulations. Three observations are noteworthy : (a )  there is not a 
substantial difference between the quality of the predictions of the K--E model and the 
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0.5 1 
0 2 4 6 8 10 

t* 

FIGURE 2. Time evolution of the turbulent kinetic energy for homogeneous shear flow: O/S = 0,  
co/SKo = 0.296. -, K--E model; ....., Rotta-Kolmogorov (RK) model; --, Launder et al. (LRR) 
model; -.-, Shih-Lumley (SL) model; 0, large-eddy simulation of Bardina et al. (1983). 

3.5 '.- I 

0 2 4 6 8 
1' 

FIGURE 3. Time evolution of the turbulent dissipation rate for homogeneous shear flow: O/S = 0, 
co/SK,  = 0.296. Symbols as in figure 2. 

LRR model for t* < 6;  (b )  the RK model is well within the range of the large-eddy 
simulations but it gives rise to noticeable points of inflection that appear to be 
unphysical ; and (c) the SL model is much less energetic than the other models as well 
as the large-eddy simulations. 

Direct comparisons with the experiments of Champagne et al. (1970) are somewhat 
tenuous owing to the uncertainty as to what the initial dissipation was in that study. 
Mild to moderate changes in the initial dissipation (reflected in the initial condition 
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1.09 

(4 

0.8 

0.6 

K*(t*) 

0.4 

- - _ - _ _ _ -  - - -  

0 2 4 6 8 10 
t* 

I I I I I I 
0 2 6 8 10 

t* 

FIGURE 4. Time evolution of the turbulent kinetic energy for homogeneous shear flow: comparison 
of the models with physical experiments. (a )  Champagne et al. (1970) experiment ; ( b )  Tavoularis 
& Corrsin (1981) experiment. Symbols as in figure 2.  

eo/SKo) can yield considerably different results for the time evolution of the 
turbulent kinetic energy and dissipation rate. I n  figure 4(a), it is shown that all of 
the models can be made to fit the Champagne et al. (1970) data for different initial 
conditions on eo/SK, which range from 1.2 to  1.5t - values that are within the range 
of what can be extrapolated from the Champagne et al. data. For t* > 8, the models 
yield considerably different results for the turbulent kinetic energy despite the fact 
that they match the Champagne et al. data for t* < 4. Consequently, the Champagne 
et al. experiment constitutes a rather weak test for turbulence models. The 

t E ~ / S K ,  is 1.2 for the SL model, 1.3 for the K--E model, 1.4 for the LRR model and 1.5 for the 
RK model. 
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0 2 4 6 8 10 
f* 

FIGURE 5.  Time evolution of the turbulent kinetic energy for rotating homogeneous shear flow : 
B/S = 0.25, &,/SK, = 0.296. Symbols as in figure 2 .  

0 2 4 6 8 10 
t* 

FIGURE 6. Time evolution of the turbulent dissipation rate for rotating homogeneous shear 
flow: B/S = 0.25, e,/SK, = 0.296. Symbols as in figure 2.  

experimental data of Tavoularis & Corrsin (1981) represent a more stringent test 
since the shear rate S is larger than that for the Champagne et aE. experiment and 
since the initial conditions are specified more completely. In figure 4(b) ,  the time 
evolution of the turbulent kinetic energy predicted by the various models is 
compared with the experimental data of Tavoularis & Corrsin (1981). It should be 
noted that t* = 0 corresponds to S t  x 6.75 in the Tavoularis-Corrsin experiment 
for which b, and SKIS are provided therein (hence, the uncertainty in the initial 
conditions is overcome). It is clear from figure 4 (b )  that the RK model and the SL 

20 FLM 209 
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4.0 

/ 
3.5 t 
3.0 1 

2.5 1 
K*(t*) 

2.0 / 

I I I I I 

0 2 6 8 
t* 

0 

FIGURE 7 .  Time evolution of the turbulent kinetic energy for rotating homogeneous shear flow : 
Q/S = 0.5, co/SK0 = 0.296. Symbols as in figure 2. 

4.0!7----- 3.5 

0 2 4 6 8 10 
t* 

FIGURE 8. Time evolution of the turbulent dissipation rate for rotating homogeneous shear 
flow: Q / S  = 0.5, eo/SK0 = 0.296. Symbols as in figure 2.  

model do a reasonably good job in predicting the time evolution of the turbulent 
kinetic energy. However, the K-s model and the LRR model appear to be somewhat 
too energetic. 

Although the models considered in this study do reasonably well for pure shear, i t  
will now be shown that the quality of the predictions degrades considerably with the 
imposition of a system rotation. In  figures 5 and 6, the time evolution of the 
turbulent kinetic energy and dissipation rate are shown for sZ/S = 0.25 and the same 
initial condition of eo/SK, = 0.296. From figures 5 and 6, it is clear that all of the 
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Equilibrium 
values 

a/s = 0 a11 
a 2 2  

a12 
SKI€ 

Q/5 = 0.25 a,, 
a 2 2  

a12 
SKI€ 

a22 

a12 
SKI€ 

Q/S = 0.5 a11 

Linear 
K--E model 

0 
0 

6.03 

0 
0 

6.03 
0 
0 

6.03 

-0.332 

-0.332 

-0.332 

Nonlinear 
K--E model 

0.431 
-0.308 
-0.332 

6.03 

0.062 
0.062 

6.03 

0.431 

6.03 

-0.332 

-0.308 

-0.332 

Large-eddy 
Experiments simulations 

0.403 0.61 
-0.295 -0.53 
-0.284 -0.29 

6.08 

- 0.12 
0.09 

- -0.70 

- 

- 

- - 

- -0.53 
- 0.50 
- -0.20 

TABLE 1 .  Equilibrium results for homogeneous turbulent shear flow in a rotating frame: 
comparison of the predictions of the K--E model with the large-eddy simulations of Bardina et al. 
(1983) and the experiments of Tavoularis & Corrsin (1981). 

models substantially underpredict the turbulent kinetic energy and dissipation rate 
in comparison to the results of the large-eddy simulation of Bardina et al. (1983). This 
discrepancy appears to be serious since the rather dramatic increase in turbulence 
activity indicated by the large-eddy simulations in figure 5 has been confirmed 
independently by linear spectral models (see figure 3 in Bertoglio 1982). In addition, 
one would expect, on physical grounds, the case of Q/S = 0.25 to be substantially 
more energetic than the case of Q/S = 0. When third-order moments are neglected 
in the Reynolds stress transport equations, the equations associated with the 
a/# = 0.25 case are identical to those for plane strain and it is well known that plane 
strain is considerably more energetic than plane shear in homogeneous turbulence. 
Unfortunately, there are no published experiments with which the models can be 
compared. 

The time evolution of the turbulent kinetic energy and dissipation rate for Q/S = 
0.5 and an initial condition of co/SKo = 0.296 is shown in figures 7 and 8. It appears 
that the RK model yields results that are in the best agreement with the large-eddy 
simulations. The LRR model and the SL model yield qualitatively different 
predictions for this case in comparison to the RK model (the former models predict 
that the turbulence decays whereas the latter model predicts a weak exponential 
growth). This considerable disparity in the predictions of the models arises from the 
way in which the rapid pressure-strain is modelled. The LRR and SL modelling of 
this term destroys similitude with respect to the Richardson number - a similarity 
property which the RK model has (see Speziale & Mac Giolla Mhuiris 1989). The 
Richardson number 

(72) 
- 2Q(S - 2Q) 

S2 
Ri = 

is zero for the two cases of Q/S = 0 and Q/S = 0.5. Here, the RK model yields the 
same results for both cases; the LRR model and SL model yield qualitatively 
different results for the two cases ; and large-eddy simulations indicate that the two 
cases are quantitatively distinct but qualitatively similar. It should be noted that 
the prediction of a decaying turbulence for sufficiently large values of Jz/S > 0.5 is 
physically correct and will be discussed later. However, large-eddy simulations and 

11.2 
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alternative theoretical analyses indicate that the flow should be unstable for a t  least 
the range 0 < Q/S < 0.5. 

The equilibrium states associated with the K-e model for rotating shear flow were 
derived earlier in (8), (13), (20) and (21). In  table 1 ,  the specific numerical values of 
the equilibrium anisotropy tensor a,, and shear parameter SK/e are given as a 
function o€Q/S for both the linear and nonlinear K-e models. It should be pointed out 
that these results were computed using the value of C, = 0.055 which was 
recommended by Rodi (1972) for ratios of production to dissipation P / c  of the order 
of 2 or greater (for the problem at hand, P/e = 2). The traditional value of C, = 0.09 
was used €or the time evolution computations shown in figures 2 and 3 since it 
rigorously applies for €‘/e = 1 (the mean between the initial value of P/e = 0 and the 
equilibrium value of P/e = 2) and thus constitutes a reasonable average for C,L that 
is used in most engineering calculations where there is a temporally or spatially 
varying turbulence structure. It is clear that  the equilibrium values shown in table 1 
for the linear K-e model are extremely poor in their prediction of the normal 
components of the anisotropy tensor. The nonlinear K-e model yields considerably 
improved predictions for these normal components of the anisotropy tensor (it 
should be noted that the large-eddy simulations tend to overpredict the anisotropy 
tensor because the flow was not defiltered). However, both the linear and nonlinear 
K-e models yield equilibrium values of al,  and SK/e which are the same for all values 
of Q/S. While these predictions for (SKIe),  are reasonably good for Q/S = 0, they 
can be in serious error for other values of Q/S. Specifically, for large values of Q/S, 
a relaminarization of the flow would be anticipated on physical grounds where the 
turbulence decays in such a way that (e /SK),  = 0. Such a relaminarization would be 
expected since, when Q/S > 1,  the Rossby number (e/2QK), < 0.1. A Taylor- 
Proudman reorganization of the flow to  a two-dimensional state can then occur 
(see Tritton 1977), and the preponderance of evidence indicates that uniform shear 
flow is stable to large-amplitude two-dimensional disturbances (see Patera & Orszag 
1981). Therefore, any significant trend towards a two-dimensionalization would be 
accompanied by a relaminarization. Linear spectral models suggest that uniform 
shear flow is unstable for Ri < 0 (i.e. 0 < Q/S< 0.5). Although precise bounds for the 
stability of uniform shear flow in a rotating framework have not been established, it 
is generally believed that this flow is stable for Richardson numbers that are 
somewhat greater than zero (e.g. for Ri > 0.25; see Bertoglio 1982). Hence, it is clear 
that ( S K I € ) ,  must vary considerably with Q/S, in conflict with results predicted by 
the K-e model. 

The equilibrium states associated with LRR model are solutions of the nonlinear 
algebraic equations (38)-(41). Non-zero values of (s /SK),  occur for -0.0904 < Q/S 
< 0.3761 where the equilibrium states are given by 

(1 - C,) (C, + ac, - 
601(2-C,)~ 
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2a[(2 - C,) (Q/S) - $( 1 - C,)] 
l--a-cl (a11)Oo = 

- 2 a [ ( 2 - c C , ) ( Q / s ) - ~ ( l - C 2 ) ]  
1-a-C, (az2)Oo = 2 (77) 

By linear analysis, i t  can be shown that the upper branch (e/SK), > 0 is a stable 
fixed point of the focus type; the lower branch (e/SK), is an unstable fixed point of 
the same type. Of course, realizability requires that e/XK > 0. Thus, it is interesting 
to note that realizability is satisfied by this model through the presence of the 
unstable branch (e/SK),  = 0 which is an invariant plane (i.e. solutions that originate 
in the upper half-plane (s/SK,) > 0 of the phase space remain there for all times 
t > 0). Hence, realizable initial conditions ensure realizable solutions for all time. 
Equilibrium solutions for the LRR model where (e /XK),  = 0 and (aln) ,  = 0 exist for 
all sZ/S and are of the form 

(EISK), = 0, (a12L = 0, (79) 

where (a,2), is arbitrary.? Linear analysis also shows that this solution is an unstable 
saddle in the region -0.0.592 < Q/S < 0.3449; numerical results indicate that this 
solution is actually unstable for the entire region -0.0904 < Q/S  < 0.3761 where the 
alternative solution (73)-(78) is stable. The equilibrium solution (79)-(81) is a stable 
fixed point of the focus type for Q/S < -0.0904 and sZ/S > 0.3761. Interestingly 
enough, there exists an additional branch of equilibrium solutions where (e/SK),  = 0 
and (aJm is non-zero €or -0.0592 < sZ/S < 0.3449; however, these solutions are 
saddles which are, of course, unstable and thus never observable computationally. A 
bifurcation diagram of these equilibrium solutions for the LRR model is shown in 
figure 9 where we plot (EISK), us. Q/S. Only one stable equilibrium solution exists 
for a given value of Q/S.  It should be noted that the equilibrium solutions for which 
(e/SK),  > 0 have a turbulent kinetic energy and dissipation rate that grow 
exponentially with time. The stable equilibrium solutions for which (e/XK), = 0 can 
have a turbulence structure that either grows or decays with time. More specifically, 
numerical solutions of the LRR model indicated an exponential growth in the 
turbulent kinetic energy and dissipation rate for -0.11 < Q/S < 0.39; there was 
a lower-law decay in the turbulent kinetic energy and dissipation rate for 
Q/S < -0.11 and Q/S > 0.39. 

The RK model has equilibrium solutions of a similar nature. Non-zero values of 

t Computations, however, indicate that for any given value of Q/S only one value of (a.Jrn is 
stable. 
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FIQURE 9. Bifurcation diagram for the LRR model. 

(e /SK) ,  occur in the region -0.0915 < Q/S  < 0.5915 for which the equilibrium 
states are given by 

9 (82) 
~[~(l-Bl/6Al)(l-3Cl)(E-3)-Z2Cl+8(52/S)-16(52/S)2]~ (&), = B1/6Al-1 - 2 / ( E - 3 )  

4~;-~(52/w 
= ( E - 3 ) [ 1 - B , / 6 A 1 + 2 / ( E - 3 ) ] ’  

(a22)m = (E-3)[1-B1/6A1+2/(E-3)]’ 

(a33)m = ( E -  3) [ 1 -B,/6Al + 2 / ( E -  3)] ’ 

4[2(52/S) -%I 

4 
3 

-- 

(84) 

where (as with the RR model) analysis indicates that  the positive branc.. (e/SK),  
> 0 is a stable fixed point of the focus type and the negative branch (e /SK),  < 0 is 
an unstable fixed point of the same type. These branches of equilibria exist in 
conjunction with one where (e/SK),  = 0 and (alz),  = 0 which is valid for all 52/S and 
given by 

(e /SK),  = 0, (4, = 0, (87) 

where (az z ) ,  can be arbitrary (computations, however, suggest that  only one value 
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FIQURE 10. Bifurcation diagram for the RK model. 

of (az2) ,  is stable for any given value of Q/S). Computations indicate that the 
equilibrium solution (87)-(89) is unstable for -0.0915 < Q/S < 0.5915 (by a linear 
analysis it can be shown that (87)-(89) is an unstable saddle for 0.0009 < Q/S < 
0.4991). The stability of this solution for Q/S > 0.5915 and for Q/S < -0.0915 was 
verified by computations. It is interesting to note that (similar to the LRR model) 
the RK model has additional unstable equilibria where (e /SK),  = 0 but ( u , ~ ) ~  is non- 
zero in the region 0.0009 < Q/S < 0.4991. By linear analysis, these equilibrium 
solutions can be shown to be saddles which are unstable. A bifurcation diagram for 
the RK model is shown in figure 10. It has the same structure as that for the LRR 
model (the two models are topologically equivalent from a dynamical systems 
standpoint). The primary difference between them is that the RK model predicts an 
equilibrium value of (s /SK),  = 0 with a decaying turbulent kinetic energy and 
dissipation rate for Q/S > 0.61 as compared to  the corresponding range of Q/S > 
0.39 predicted by the LRR model. I n  this regard, the RK model is superior since 
large-eddy simulations and linear spectral models of turbulence suggest that rotating 
homogeneous shear flow is unstable for 0 < Q/S < 0.5. While the LRR model is 
seriously in error in its prediction of a relaminarization for 0.39 < Q/S < 0.5, it 
yields an equilibrium value for (s/XK),  that is in much better agreement with the 
pure shear experiments of Tavoularis & Corrsin (1981) than the result predicted by 
the RK model (see table 2). The fact that the LRR model deviates too strongly from 
Richardson-number similarity can be seen in the equilibrium values for the 
anisotropy tensor for Q/S = 0.25 shown in table 2. The LRR model predicts that 
aZ2 x - 3a,, whereas large-eddy simulations and supporting analogies with plane 
strain (see Bardina et al. 1983) indicate that a,, x a2* as predicted by the RK model. 

As alluded to  earlier, it  is not possible to obtain a closed-form solution for the 
equilibrium states of the SL model owing to its highly nonlinear nature. However, it 
was determined numerically that the SL model behaves similarly to the LRR model 
in that it predicts unstable flow for intermediate rotation rates in the range -0.12 
< Q/S < 0.40; outside of this range the flow undergoes a relaminarization. The 
computed equilibrium states for the SL model are shown in table 2 along with those 
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Equilibrium 
values 

B/s' = 0 a11 

a22 

0'12 

~ K / E  

a22 

a12 
SKI€ 

a22 

a12 
SK/a 

Q/S = 0.25 a,, 

Q l S  = 0.5 a11 

L R R  model 

0.381 
-0.190 
-0.369 

5.42 
-0.119 

0.310 
-0.415 

4.83 

-0.24 
0.32 
0 
00 

R K  model 

0.483 
-0.241 
-0.337 

3.71 
0.121 
0.121 

- 0.495 
2.53 

0.483 

3.71 

-0.241 

-0.337 

SL model 

0.228 
-0.232 
-0.243 

6.93 

0.134 

5.51 

0.239 
0 

-0.139 

-0.305 

-0.246 

a3 

Experiments 

0.403 
-0.295 
-0.284 

6.08 
- 

- 
- 

- 

- 

- 
- 

- 

Large-eddy 
simulations 

0.61 
-0.53 
-0.29 

0.12 
0.09 

-0.70 

- 

- 

-0.53 
0.50 

-0.20 
- 

TABLE 2. Equilibrium results for homogeneous turbulent shear flow in a rotating frame: 
comparison of the predictions of the L R R ,  R K  and SL models with the large-eddy simulations of 
Rardina et at. (1983) and the experiments of Tavoularis & Corrsin (1981). 
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t* 

FIQURE 1 1 .  Time evolution of the turbulent kinetic energy for the second-order closure models: 
R/9 = -0.25, q,/SK, = 0.296. Symbols as in figure 2. 

discussed previously for the LRR model and the RK model. It is interesting to note 
that for 0 6 sZ/S < 0.5 the predictions of the SL model are, on balance, no better 
than those for the LRR model which has a substantially simpler structure. A variety 
of initial conditions were shown to yield the same equilibrium states for the SL model 
as given in table 2. However, unlike the other models considered in this study, the 
equilibrium structure of the SL model is not universal (i.e. does not attract all initial 
conditions). It was found that some initial conditions for which SK,/e, & 1 have no 
long-time solutions in the SL model owing to  the function F in (62) turning negative 
(this causes the coefficient a6 to become imaginary which terminates the 
computation). Finally, in regard to the SL model, some comments should be made 
concerning the sensitivity of the results to the constant C;. A variety of values for 
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FIQURE 12. Time evolution of the turbulent dissipation rate for the second-order closure 
models: Q/S = -0.25, s,/SK, = 0.296. Symbols as in figure 2. 

6'2 ranging from 1.0 to 1.44 have been used (T. H. Shih 1988, private com- 
munication). The equilibrium values for SK/e were found to be very sensitive to 
changes in C:: for C: = 1.1, (SKIs),  w 65, whereas for C: = 1.44, (XK/s),  = 6.93. 
We decided to present results for C: = 1.44 since this value is consistent with the K-e 
model in the limit of small anisotropies and since it yields the best equilibrium values 
for SKI€. 

In  figures 11 and 12, the time evolution of the turbulent kinetic energy and 
dissipation rate predicted by the various second-order closures is shown for 
Q/X = -0.25 and -Eo/SK, = 0.296. For this counter-rotation, all of the second-order 
closures yield comparable results that are in good qualitative agreement with the 
linear spectral calculations of Bertoglio (1982) since they predict a strong, monotonic 
decay of the turbulent kinetic energy and dissipation rate. 

In figure 13, the time evolution of XK/s  is shown for each of the models and for the 
direct numerical simulations of Lee, Kim & Moin (1987) corresponding to the case of 
strong shear with an initial condition of XK,,/s,, = 50. The direct simulations were 
conducted using the Rogallo code which, for the weak shear case, was shown by 
Rogallo (1981) to yield equilibrium values of XK1-E in the range of those predicted by 
the turbulence models we have been considering. Prom figure 13, it  is clear that the 
K--E model, LRR model and RK model decrease monotonically to the same 
equilibrium values shown in table 2;  the SL model also approaches the same 
equilibrium value as given on table 2 but more slowly and with oscillations (for 
SKJe, > 100, the function F in (62) turns negative and the SL model has no long- 
time solution). In contradiction to  these model predictions, the direct simulations of 
Lee et al. (1987) indicate a monotonic growth of SK/-E (after a short initial period of 
decay) which suggests the possibility of an additional equilibrium solution for pure 
shear (where (e /SK),  = 0) that attracts initial conditions for which e,/SK, < 1.  The 
recent experiments of Karnik & Tavoularis (1983) and Rohr et al. (1988) support the 
possibility of more than one fixed point in homogeneous turbulent shear flow. 
However, the issue still needs to be clarified. 
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FIGURE’ 13. 
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Time evolution of S K / c  for homogeneous turbulent shear flow (018 = 0, SKo/co 
Direct numerical simulations of Lee et al. (1987). Other symbols as in figure 2. 
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FIGURE 14. Time evolution of the turbulent kinetic energy for the second-order closure models: 
Q/S = -0.1, RK,/e,, = 50. Symbols as in figure 2. 

The results shown in figure 13 suggest a potential problem concerning the 
applicability of the commonly used turbulence models to strong homogeneous 
turbulent shear flows. To further illustrate this point, the time evolution of the 
turbulent kinetic energy and dissipation rate are shown in figures 14 and 15, for the 
LRR, RK model and SL model corresponding to a mild counter-rotation of 
Q/S = -0.1 and a strong initial shear condition of SKo/so = 50. Both solutions are 
indicative of a monotonic growth in turbulent kinetic energy and dissipation with 
large-amplitude oscillations for St < 50. While one expects rotations to induce 
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FIGURE 15. Time evolution of the turbulent dissipation rate for the second-order closure 
models: O/S = -0.1, SK,/E,  = 50. Symbols as in figure 2. 

inertial oscillations (and, consequently, it does seem to be correct that the models 
have fixed points of the focus type), it appears that the large amplitudes of the 
oscillations shown in figures 14 and 15 (particularly those of the LRR model) are 
unphysical. Such oscillations did not occur in the linear spectral calculations of 
Bertoglio (1982) for rotating shear flow and have not, to the best of our knowledge, 
been observed in any comparable flow configuration. 

4. Conclusions 
Five commonly used turbulence models have been tested for the problem of 

homogeneous turbulent shear flow in a rotating frame based on a dynamical systems 
analysis. Extensive comparisons between the predictions of the various models and 
the results of physical and numerical experiments have been made. The following 
definitive conclusions can be drawn : 

(1) The standard K-c model is highly deficient in that it yields solutions which are 
the same for all values of Q/S, contrary to numerical simulations of the 
Navier-Stokes equations. In  particular, the model substantially underpredicts the 
normal components of the anisotropy tensor for all values of Q/S and does not 
account for the flow restabilization that occurs for most positive Richardson 
numbers. 

(2) The nonlinear K-c model yields improved predictions for the normal 
components of the anisotropy tensor that are in the correct range of the results of 
large-eddy simulations for 0 < Q/S 6 0.5 and physical experiments for Q/S = 0. 
However, the nonlinear model yields the same deficient predictions for K and c as the 
standard K-c model. 

(3) The Launder, Reece & Rodi model yields reasonably acceptable predictions for 
the time evolution and equilibrium states corresponding to pure shear (Q/S = 0). 
However, the quality of the predictions degrades considerably with increasing Q / S  
in the unstable flow regime. The model erroneously predicts flow restabilization for 
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negative Richardson numbers (i.e. for 0.39 < Q/S < 0.5, -0.17 < Ri < 0).  Further- 
more, for strong initial shear rates where SK,Je, % 1,  the model can give rise to 
large-amplitude inertial oscillations which appear to be unphysical. 
(4) The Rotta-Kolmogorov model predicts unstable flow (i.e. unbounded growth in 

K and e )  for -0.11 < Q/S < 0.61 which is in reasonable agreement with numerical 
simulations and linear spectral analyses of the Navier-Stokes equations. Its 
predictions for the equilibrium anisotropy tensor are moderately good (except for ua3 
which is erroneously independent of Q/S), but it yields poor quantitative results for 
the equilibrium values of SKIe and gives rise to points of inflection and large- 
amplitude inertial oscillations for some time evolutions of K and e. The model 
exhibits exact similitude with respect to the Richardson number which is not 
supported by large-eddy simulations. Nevertheless, in this regard, it is still superior 
to the LRR model which deviates too strongly from Richardson-number similarity 
in its prediction of a premature relaminarization. 

(5) The Shih-Lumley model is not energetic enough and consistently underpredicts 
the kinetic energy and dissipation rate in the unstable flow regime 0 < Q/S < 0.5. 
Unfortunately, its predictions for the equilibrium states are no better than those of 
the older second-order closures (i.e. the LRR model and the RK model) which have 
a considerably simpler structure. Like the LRR model, it deviates too strongly from 
Richardson-number similarity in its erroneous prediction of flow restabilization for 
negative Richardson numbers (i.e. for -0.15 < Ri < 0).  Furthermore, it has no long- 
time solutions for certain initial conditions corresponding to strong shear where 

Finally, we shall make suggestions for the development of improved models. It is 
clear that the major deficiency with the nonlinear K-e model lies in its lack of an 
(EISK), = 0 fixed point and the lack of any dependence on Q/S in the dissipation 
rate transport equation. This can be corrected by allowing C,, and C,, to be nonlinear 
functions of an appropriate flow invariant which reduces to e/QK for rotating shear 
flow. With such a correction, the nonlinear K-e model could become a strong 
competitor to the commonly used second-order closure models. In  order to improve 
the second-order closures,we propose that material frame-indifference in the limit of 
two-dimensional turbulence (which constitutes a geostrophic flow constraint that all 
of the models considered herein violate) be applied in the manner of Haworth & Pope 
(1986) and Speziale (1985). This should yield improved behaviour in the low-Rossby- 
number limit and provide the possibility of an additional fixed point for the high- 
shear-rate case since this correction increases by one the degree of the nonlinearity 
in rij.  The implementation of these improvements and their evaluation based on a 
dynamical systems approach will be the subject of future work. 
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